Privacy of E-Voting (Internet Voting)

Erman Ayday

Security/Privacy of Elections

- Since there have been elections, there has been tampering with votes
- Archaeologists discovered a dumped stash of 190 broken pottery shards that appear to have been used by ancient Athenians for a vote in 471 B.C.
- Today: election-security advocates are worried about the bits and bytes

Internet Voting

- Internet voting: Actions that are used by voters to obtain and return ballots using the Internet
- Convenient, efficient and secure facility for recording and tallying votes in an election
- Should be explained as simply as possible to be understandable for voters
 - Preferably, no zero-knowledge proofs, blind signatures, etc.

"We don't have the technology yet to do [Internet voting] in a secure way, and we may not for a decade or more."

Ron Rivest (2010)

A "Perfect" Internet Voting System Guarantees:

• Privacy

- Votes cannot be linked to voters
- Voters can vote anonymously

Receipt-freeness

Voter cannot gain any information (a receipt) which can be used to prove to a coercer that he voted in a certain way

Coercion-Resistance

- Voter cannot *cooperate* with a coercer to prove to him that he voted in a certain way
- No vote buying
- Correctness
 - Only eligible voters can vote
 - Nobody can vote more than once
 - Submitted votes cannot be altered
 - All valid votes are counted
- Fairness
 - No partial results are revealed
- Verifiability
 - Correctness can be publicly verified (by anyone)

Internet Voting - Privacy Requirements

- Vote-privacy
 - The attacker cannot discern how a voter votes from any information that the voter necessarily reveals during the course of the election

Receipt-freeness

- Can be intentional or unintentional
- Unintentional receipts include nonces or keys the voter gives during the protocol
- Stronger than privacy
- The attacker cannot discern how a voter votes even if the voter voluntarily reveals additional information

Coercion-resistance

- Strongest of the three
- The attacker cannot discern how a voter votes even if the voter cooperates with the attacker during the election process
 - Giving the attacker any data
 - Using data which the attacker provides in return
- Note: voter can tell an attacker how he voted, but unless he provides convincing evidence the attacker has no reason to believe him

Main Challenges

- Internet voting should offer the same level of security and confidence as traditional voting
- When there's no physical ballot, it becomes impossible to determine whether there has been tampering in a close election
- Privacy when casting ballots
- Privacy of returned ballots

Privacy Challenges

- Privacy when casting ballots
 - Software bugs or malicious software in the voter's computer
 - Modify the candidates selection before the ballot is returned
 - Employers can monitor the online activity of their employees
 - By monitoring logs or using "key loggers"
- Privacy of returned ballots
 - Voter needs to sends some identifying information along with his ballot
 - Vote can be linked to the voter

Internet Voting in Research

- More than 6 specialized international conferences
 - VotelD
 - EVT/WOTE
 - EVOTE
 - REVOTE
 - SecVote
 - Swiss E-Voting Workshop

Internet Voting – Potential Directions

- Standard cryptography
 - Encryption
 - Digital signatures
- Advanced cryptography
 - Homomorphic tallying
 - Blind signatures
 - Secret sharing
 - Threshold cryptosystems
 - Mix networks
 - Zero-knowledge proofs

Existing Techniques

- Blind signature schemes
 - Message blindly signed by the administrator
 - Signature of the administrator confirms the voter's eligibility to vote
- Homomorphic encryption
 - Compute the encrypted tally directly from the encrypted votes
- Randomization
 - E.g., by mix-nets
 - Mix up the votes so that the link between voter and vote is lost

Verifying Privacy-Type Properties of Electronic Voting Protocols [1]

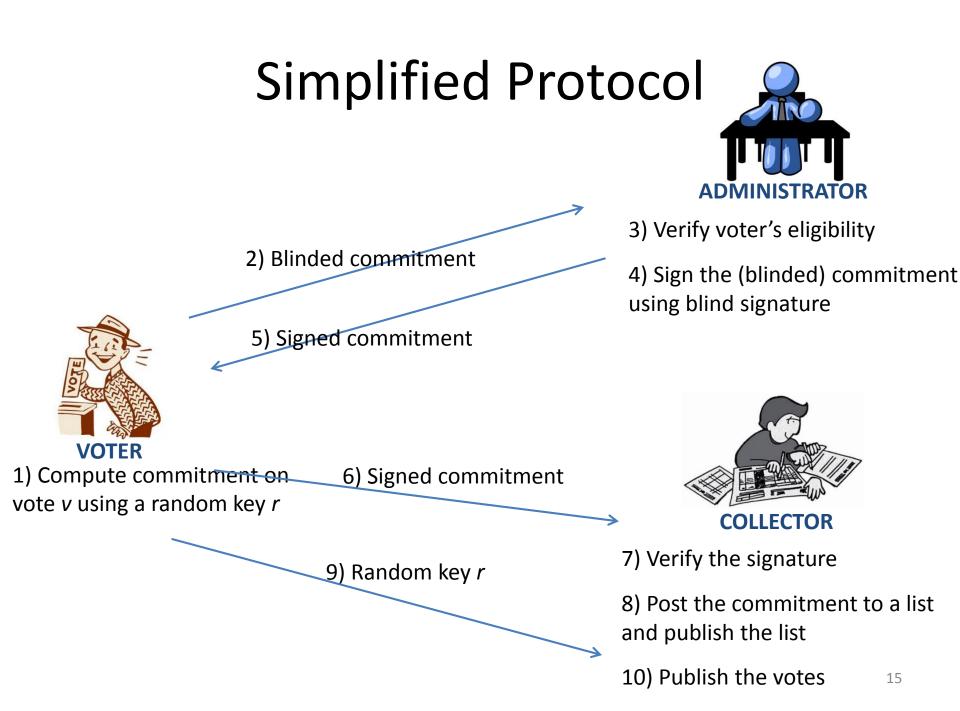
- Formalized the privacy-related properties
- Used applied pi calculus
 - Language for describing concurrent processes and their interactions
 - Used to study a variety of security protocols
- Evaluated three schemes based on
 - Privacy
 - Receipt-freeness
 - Coercion-resistance

11

Formalizing the Properties

- **Privacy:** attacker cannot distinguish a situation in which Alice votes *a* and Bob votes *b*, from another one in which they vote the other way
- Receipt-freeness: attacker cannot detect a difference between Alice voting in the way he instructed, and her voting in some other way, provided Bob votes in the complementary way each time
- Coercion-resistance: attacker is assumed to communicate with Alice during the protocol, and can prepare messages which she should send during the election process

Main Findings

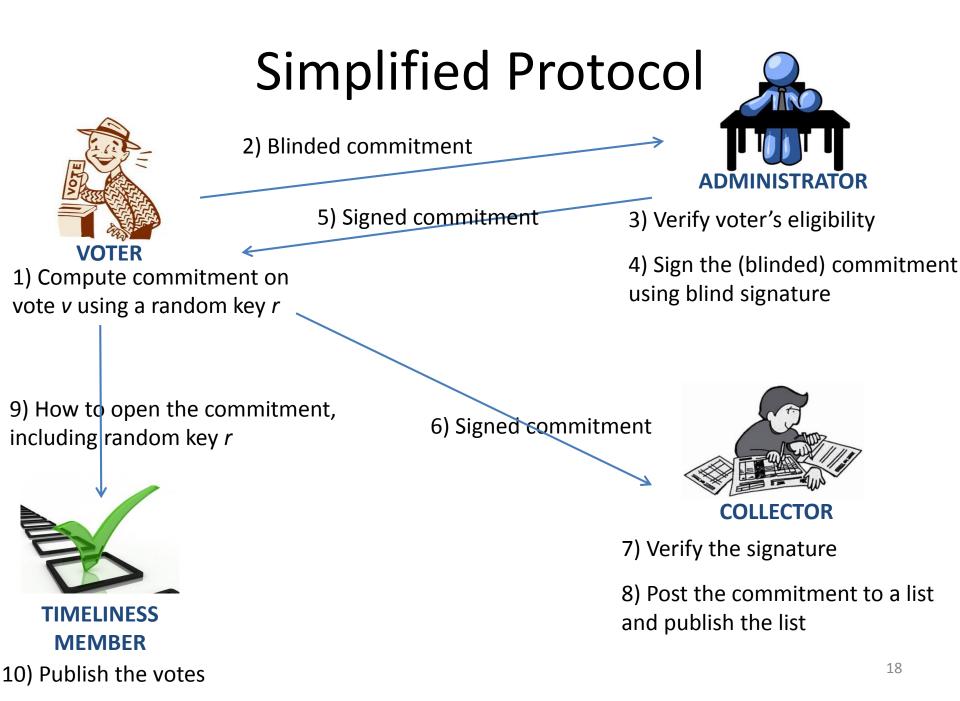

• If a voting protocol is receipt-free then it also respects privacy

• If a voting protocol is coercion-resistant then it also respects receipt-freeness

1st protocol [1] - Overview

- *Secure bit-commitment*: voter computes a commitment on his vote
 - Noone can see the vote before the voter releases the key for the commitment
- *Blind signatures*: administrator digitally signs the voter's (blinded) commitment without learning the commitment or the vote
 - Administrator is not allowed to see the commitment
 - Administrator knows the ID of the voter
 - It can link the voter to the vote once the voter reveals the commitment key

[1] Atsushi Fujioka, Tatsuaki Okamoto, and Kazui Ohta. A practical secret voting scheme for large scale elections. In Advances in Cryptølogy AUSCRYPT '92, 1992

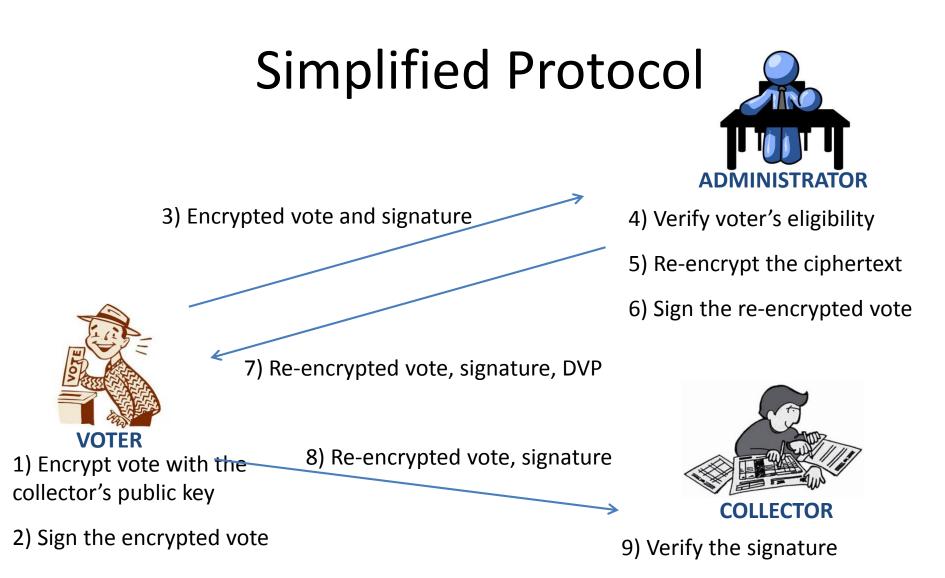


1st protocol - Analysis

- Privacy: respects privacy
- Receipt-freeness: scheme is not receipt-free
 - If the voter gives away the key for commitment, the coercer can verify that the committed vote corresponds to the coercer's wish
- Coercion-resistance: scheme is not coercionresistant

2nd Protocol [1] - Overview

- *Trap-door bit commitment* scheme to have receipt-freeness
 - Allows the voter who has performed the commitment to open it in many ways
 - Voter says how he wants to open his commitment during the voting stage
- Introduced an extra party to the 1st protocol:
 - Timeliness member: voter says how to open the commitment through an untappable anonymous channel


2nd Protocol - Analysis

- Privacy: respects privacy
- Receipt-freeness: scheme is receipt-free
 - Info given by the voter to the timeliness member (T) can be different from the one he provides to the coercer
 - Voter who forged the commitment, provides to the coercer the one allowing the coercer to retrieve the vote *c*, whereas she sends to T the one allowing him to cast the vote *a*
- Coercion-resistance: scheme is not coercion-resistant
 - If the coercer provides the voter with the commitment that he has to use (without revealing the trap-door), the voter cannot cast her own vote a
 - Voter cannot produce fake outputs as she did for receipt-freeness
 - Similar to providing a public key to sign but not providing the private key

3rd Protocol [1] - Overview

- Relies on *re-encryption* and *designated verifier proofs (DVP)* of re-encryption
 - DVP of the re-encryption proves that the two ciphertexts contain indeed the same plaintext
 - Gives the designated verifier the ability to simulate the transcripts of the proof
 - Only convinces one intended person
 - Here only convinces the voter, that the re-encrypted ciphertext contains the original plaintext
 - Cannot be used to convince the coercer

^[1] Byoungcheon Lee, Colin Boyd, Ed Dawson, Kwangjo Kim, Jeongmo Yang, and Seungjae Yoo. Providing receipt-freeness in mixnet-based voting protocols. In Proc. Information Security and Cryptology, 2004

10) Decrypt the votes

11) Publish the result

3rd Protocol - Analysis

- Privacy: respects privacy
- Receipt-freeness: scheme is receipt-free
 - Remember: DVP gives the designated verifier the ability to simulate the transcripts of the proof
 - Using his private key, the voter provides a fake DVP stating that the actual re-encryption of the encryption of vote a is a re-encryption of the encryption of vote c
- Coercion-resistance: scheme is coercion-resistant
 - Similar reasoning as receipt-freeness

Internet Voting in Real-Life

• Netherlands

- Vulnerability of system exposed in public (2006)
- Council of ministers decided to fully return to paper-based elections (2008)
- Germany
 - Computers used for Bundestag election (2005)
- Norway

- Communal and regional elections in 2011

 Switzerland, Estonia, Spain, Brazil, Australia, India, Canada

Internet Voting - Estonia

Internet Voting - Estonia

• Goal: increase voter participation

		. •			
Type of elections	Date	Internet votes (% of all votes)	electorate)	voting	First time users of ID card online (%)
Municipal elections	Oct 2005	1.9	47.4	0.9	61
Parliamentary elections	April 2007	5.5	61.9	3.4	39
European Parliament	June 2009	14.7	43.9	6.5	19
Municipalel ections	Oct 2009	15.8	60.6	9.5	18.5
Parliamentary elections	March 2011	24.3	63.5	15.4	N/A

– Allowed voting through chip-secure mobile phones

Legislative Demands

- Voters should hold a certificate and be able to generate a digital signature
- Voters may vote electronically on the web page of the National Electoral Committee
- A voter shall identify himself or herself by giving a digital signature
- E-voting shall be an additional voting option

Highlights

- ID-cards are used for voter identification
 - Open-source public key-private key encryption software (upgraded to 2048-bits in 2011)
- Possibility of electronic re-vote
 - Voter can cast his vote again and the previous vote will be deleted
 - Measure against vote-buying and voting under coercion
- The priority of traditional voting
 - Should the voter go to polling station on voting day and cast a vote, his e-vote shall be deleted
- Published e-voting source code on GitHub 2013

<u>https://github.com/vvk-ehk/evalimine</u>

Voter Authentication

- Via the ID card
- Cards are equipped with a chip containing electronic data, certificates and their associated private keys protected with PIN-codes
- In some countries, identification codes are sent to the voters often by post
 - But, many citizens have not been interested to disclose their real home address to the national population register

Voter Authentication

🗿 www.valimised.ee - Microsoft Inter	rnet Explorer		
] ← Back - → - 🔕 🖸 🖓 🔕	Search 👔 Favorites 🍘 Media 🎯 🖏 - 🎒 💽 - 📄 📖 ,	2	
File Edit View Favorites Tools	Help		
Lirks » Address www.valimised.ee			
X	Vabariigi	Valimiskomisjon	
 Küsitluse teema ja tingimused Kus asiwad hääletuspunktid Kuidas hääletads internetis 	Name: Mari-Liis Männik Idendity code: 47302200234 Constituency: City of Tartu, Distri	ct No 1	
 Korduma kippuvad küsimused 			Struww.valimised.ee - Microsoft Internet Explorer
	Confirm your choice by signing it d	ligitally:	File Edit View Favorites Tools Help
	our choice:		JLirks ²⁰ Address www.valmiced.ee
	103 Helve Hani	ΓE	Kusitluse teema ja tingimused Your ballot has been recorded. Kuis asuvart hääletuspunktid Kuidas hääletads internetis Thank you! Korduma kippuvad küsimused
	~	20	HARVER HARVER

To Vote Remotely You Need:

• The ID-card

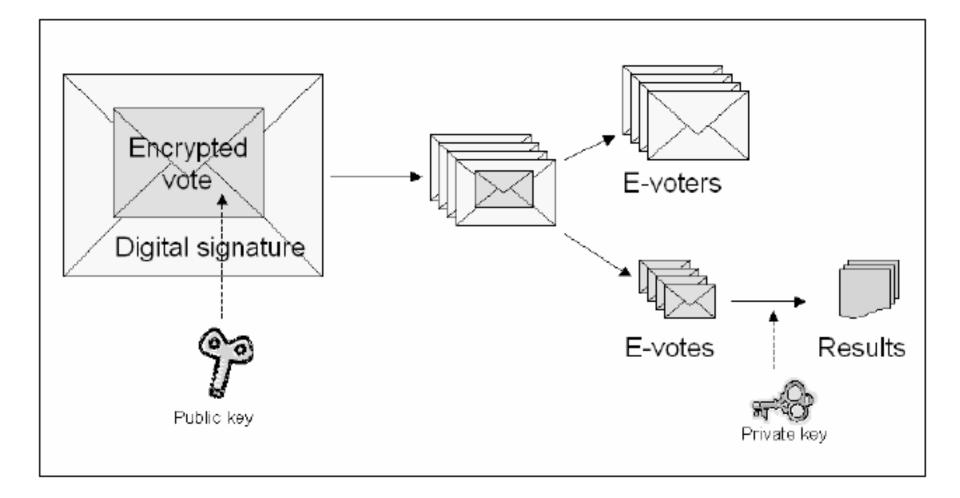
Issued by Citizenship and Migration Board

PIN-codes

Issued together with the ID-card

Valid certificates

- Once your certificates are expired, you can renew them on your own
- A computer with an active Internet connection
- A smartcard reader


From a computer store or your local bank office

ID-card software

Overview of the Protocol

- Voter inserts the ID-card into a card reader and opens the homepage of the National Electoral Committee
- Relevant candidate list is displayed according to the voters personal identification number
- Voter makes his voting decision
 - Encrypted (via the private key of the system) and can be defined as inner envelope
- Voter confirms his choice with a digital signature
 - Can be defined as *outer envelope*
 - Voter gets a confirmation that his vote has been recorded
- During the count:
 - Voter's digital signature (outer envelope) is removed
 - Members of the National Electoral Committee can only open the anonymous e-votes and count them

Overview of the Protocol

Privacy

- To ensure the voter's privacy:
 - At no point any part of the system should be in possession of both the digitally signed e-vote and the private key of the system
- To count e-votes, the system's private key is activated by key-managers according to the established key management procedures
- Counting of votes takes place in the vote counting application, separated from the network

Drawbacks

- Application encrypts voter's choice with the system's public key
 - 1 public key for all inner envelopes
 - Single point of failure
- Threats due to viruses, malware, etc. not considered
- Have not been used in the US
 - Require storing information about the voter identity with the votes
 - Increasing the risk that voter privacy will be compromised

Internet Voting - Switzerland

- Three different systems since 2003
 - Geneva
 - Zürich (Unisys)
 - Neuchâtel (Scytl)
- All Swiss systems are "black boxes"

- Questions
 - Has my vote been counted correctly?
 - Have only valid votes been counted?
 - Have all valid votes been counted?

A Citizen Was Able to Vote Twice

SUISSE MONDE SPORTS FAITS DIVERS PEOPLE LOISIRS SOCIÉTÉ ÉCONOMIE

Web Hard-/Software Jeux Images

Un citoyen a pu voter deux fois

INTERNET — Le système de vote électronique a permis à un électeur de voter à double ce week-end. La Chancellerie fédérale se veut rassurante, mais pour le Parti pirate, ce couac décrédibilise l'e-voting.

http://www.lematin.ch/high-tech/web/seul-couac-credibilite-evoting-vole-eclat/story/18941094

Consequences

- Which of the two votes was counted?
- How does the "monitoring system" work?
 Does it detect all possible irregularities?
 - Does it guarantee the secrecy of the vote?
 - Who monitors the monitoring system?
- How trustworthy is an erroneous system?
 - Is the detection of errors a good or a bad sign?
 - How many (other) bugs does it have?
 - Is open-source software more trustworthy?

Internet Voting - Conclusion

- The "perfect" system is still missing
- Open problems
 - Secure platform
 - Vote buying and coercion
 - Long-time privacy
 - Usability of complex cryptography
- Many cryptographers are against Internet voting

References

- Epp Maaten. Towards remote e-voting: Estonian case. In Electronic Voting in Europe Technology, Law, Politics and Society, 2004
- Rolf Haenni. Privacy and Integrity in Internet Voting. March, 2012
- Jeremy Epstein. Internet Voting, Security, and Privacy. William & Mary Bill of Rights Journal, 2011
- S. Delaune, S. Kremer, and M. D. Ryan. Verifying privacy-type properties of electronic voting protocols. Journal of Computer Security, July 2009
- Atsushi Fujioka, Tatsuaki Okamoto, and Kazui Ohta. A practical secret voting scheme for large scale elections. In Advances in Cryptology AUSCRYPT '92, 1992
- Tatsuaki Okamoto. An electronic voting scheme. In *Proc. IFIP World Conference on IT Tools*, pages 21–30, 1996
- Byoungcheon Lee, Colin Boyd, Ed Dawson, Kwangjo Kim, Jeongmo Yang, and Seungjae Yoo. Providing receipt-freeness in mixnet-based voting protocols. In *Proc. Information Security and Cryptology*, 2004